Базис векторного пространства

Базис векторного пространства

Базис векторного пространства [basis of vector space] – набор из максимального (для данного пространства) числа линейно-независимых векторов. (см. Линейная зависимость векторов) Следовательно, все остальные векторы пространства оказываются линейными комбинациями базисных. Если все базисные векторы взаимно ортогональны, а длина каждого из них равна единице, то базис называется ортонормированным. Единичный базисный вектор называют ортом (обозначается ei, где i – номер координаты).

Каждый вектор пространства может быть представлен в виде линейной комбинации базисных векторов: a = Σaiei. Коэффициенты разложения ai однозначно определяют вектор a. Поэтому часто говорят, что n-мерный вектор – это упорядоченная совокупность n чисел {ai}. (См. Вектор). Размерность пространства равна количеству его базисных векторов.


Экономико-математический словарь: Словарь современной экономической науки. — М.: Дело. . 2003.


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»